

Image by JBG Companies

Russell Voigt

Washington D.C.

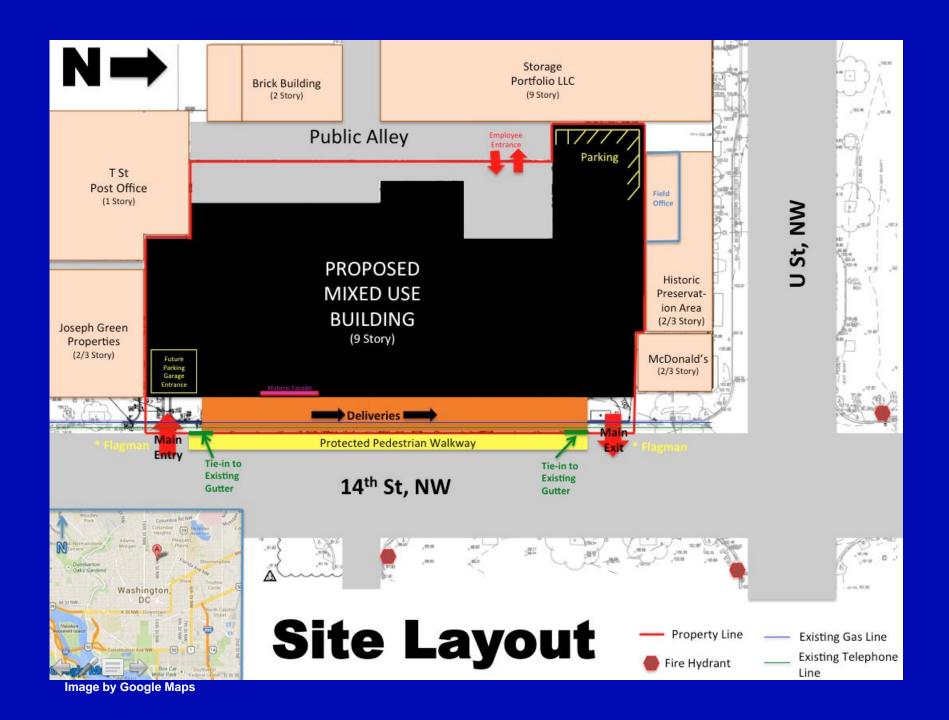
April 16, 2014 Dr. Ed Gannon Construction Option

Image by JBG Companies

Louís at the 14th

- \$47M
- 9 stories

- Ground floor retail tenants Design-Bid-Build • Construction: March 2012 - March 2014



Background Information

• 267,000 SF (GFA) • 268 rental units

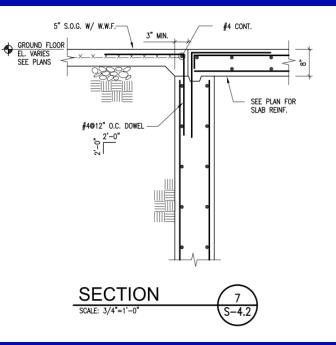
Balfour Beatty Construction

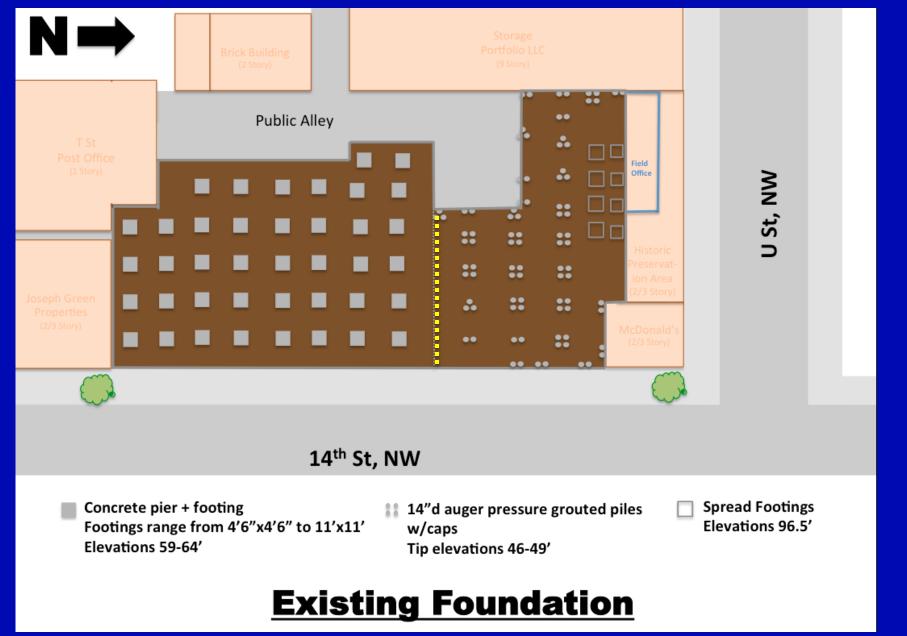
Louís at the 14th

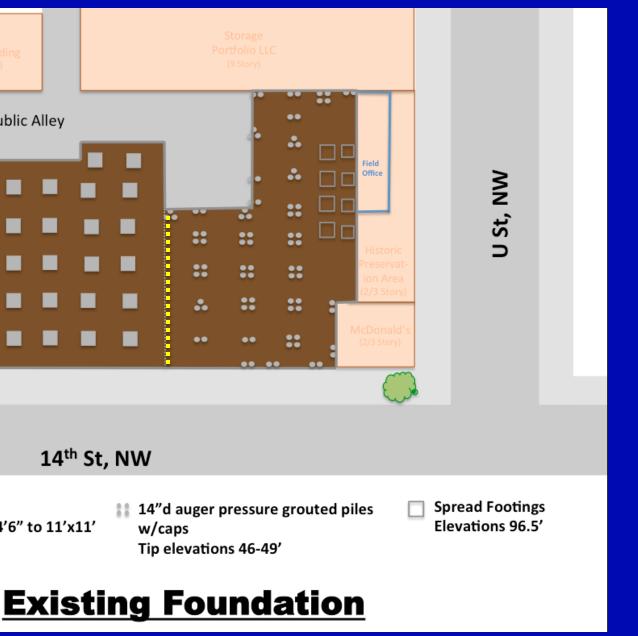
"The fatality rate for excavation work is 112% higher than the rate for general construction."

Prevention Through Design

 means & methods selection by contractor supervision & inspection thorough geotech. investigation effective communication b/w engineers & contractor • **Design-Build** delivery method recommended


LOUÍS at the 14th

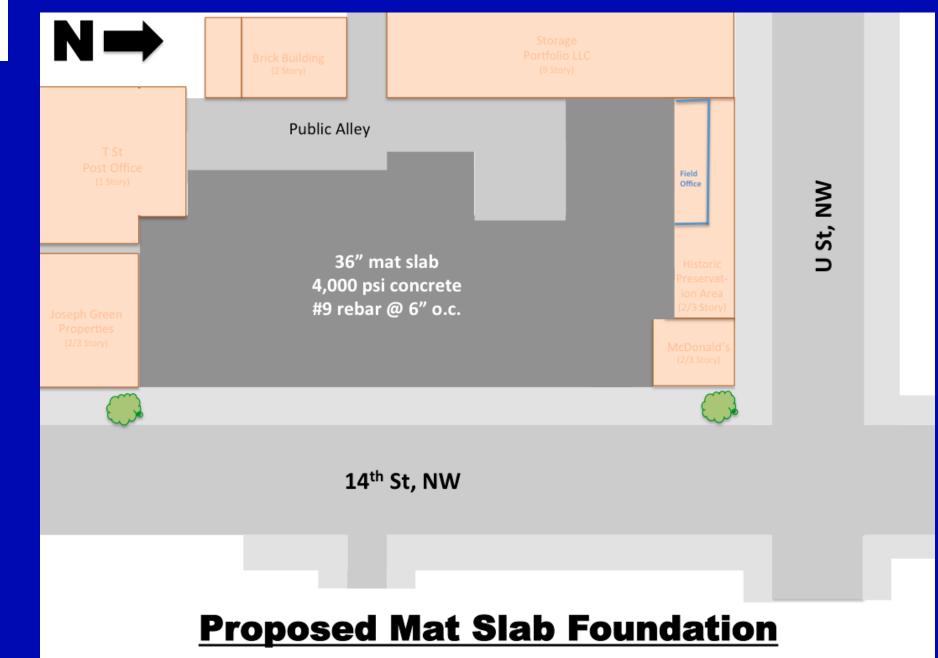

North: Capped APG Micropiles (9-stories) South: Piers on Spread Footings (6-stories)


Foundation System

As-Built

Geotech. Report •clays & sands •estimated a 4-5' thick mat slab underpinning concerns budget concerns

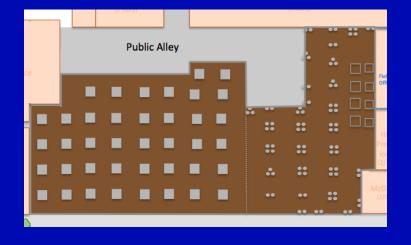
Louís at the 14th


 soil bearing capacity: 2,000 psf •slab area: 44,175 SF •slab perimeter: 900 LF largest column load: 1,100 kips (18x24) Total building loads: North: 20,770 kips South: 35,230 kips

Structural Breadth

Constraints

Results:


•36" thick w/ #9 rebar @ 6" o.c. •4,000 psi concrete •5,300 CY & 300 tons rebar •3-4" work mat included

LOUÍS at the 14th

Total Cost (O&P excluded)

Concrete: \$1,412,185 Rebar: \$751,026 \$2,163,211

Cost Impact

Total Duration

Concrete Placement: (24 workdays w/2 pump crews)

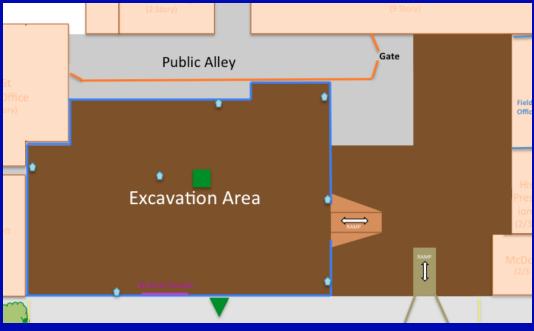
Rebar Install: 26 workdays w/ 20 rodmen 27 workdays

Actual Duration

North (micropiles): 90 workdays w/ 1 drill rig crew South (spread footings, fdtn walls, strap beams): 35 workdays

Actual Cost

North (micropiles): \$450,000 South (spread footings): \$300,000

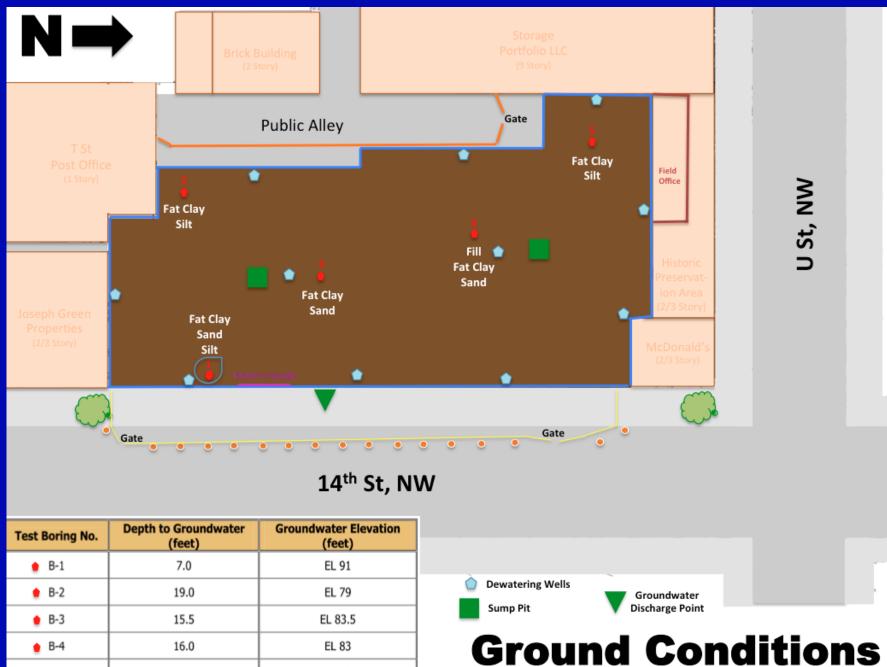

\$750,000

Schedule Impact

- 500 truckloads 1-day pour

Louís at the 14th

Actual Plan:

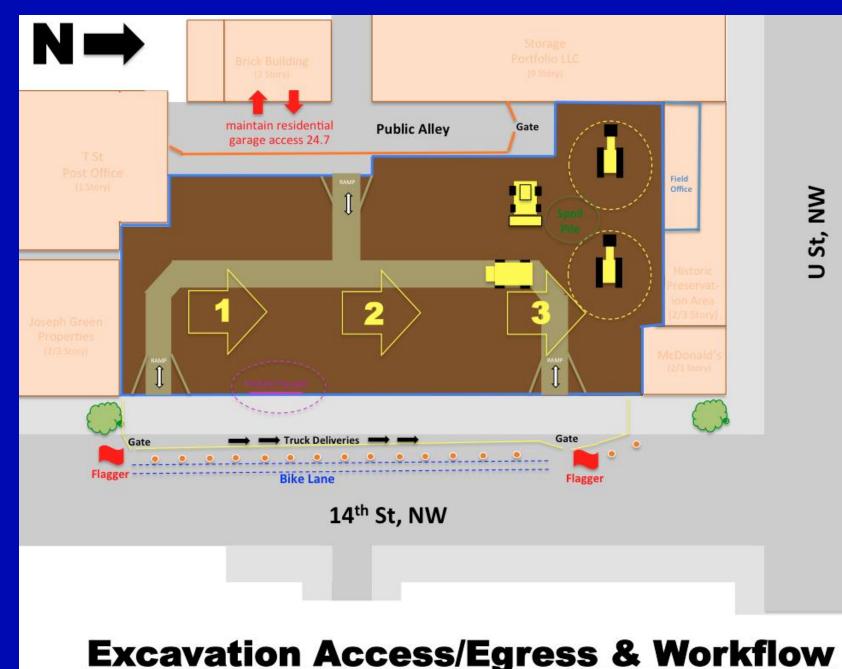


Dewatering System

Modifications:

- 28,500 SF larger area
- 10' shallower South, 10' deeper North
- 4 extra wells (11)
- each well 40-50' deep (actual: 60')
 - extra standby temporary pumps

Test Boring No.	Depth to Groundwater (feet)	Groundwater Elevation (feet)			
🔮 B-1	7.0	EL 91			
B-2	19.0	EL 79			
💧 B-3	15.5	EL 83.5			
单 B-4	16.0	EL 83			
单 B-5	11.0	EL 88			



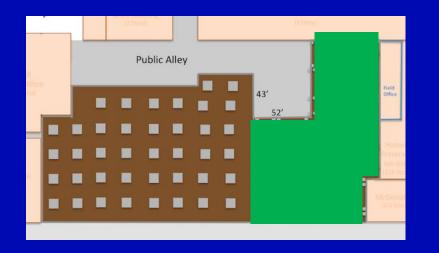
cost: \$565,290

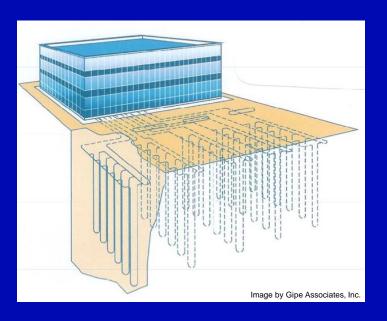
fast installation

space (<1" thick)

Excavation Support & Workflow Anchored Sheet Piling 22' depth ieback Waler & equiv. fluid pressure: 1320 psf Helical Termination Bottom of Excavation Advantages: structural capabilities •seepage control •maximizes useable little risk of blowout

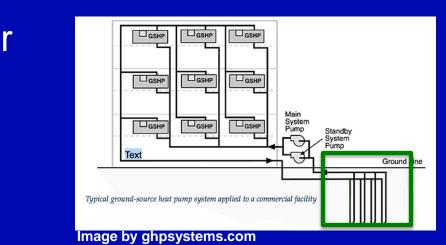
Mechanical Breadth / Geothermal Loop

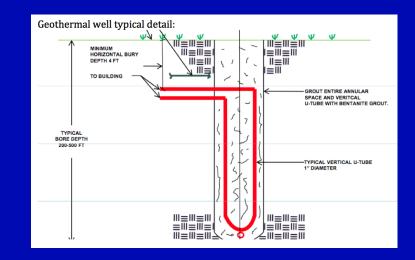



. Introduction II. Depth 1- Prevention Through Design Research III. Depth 2- Foundation System a. Structural Breadth **b.** Cost & Schedule Impact IV. Depth 3- Site Specific Safety Plan a. Dewatering System **b. Excavation Support & Workflow** V. Depth 4- Geothermal Loop System a. Mechanical Breadth **b.** Constructability Issues c. Cost & Schedule Impact VI. Conclusion & Acknowledgements

Existing Ground Floor System:

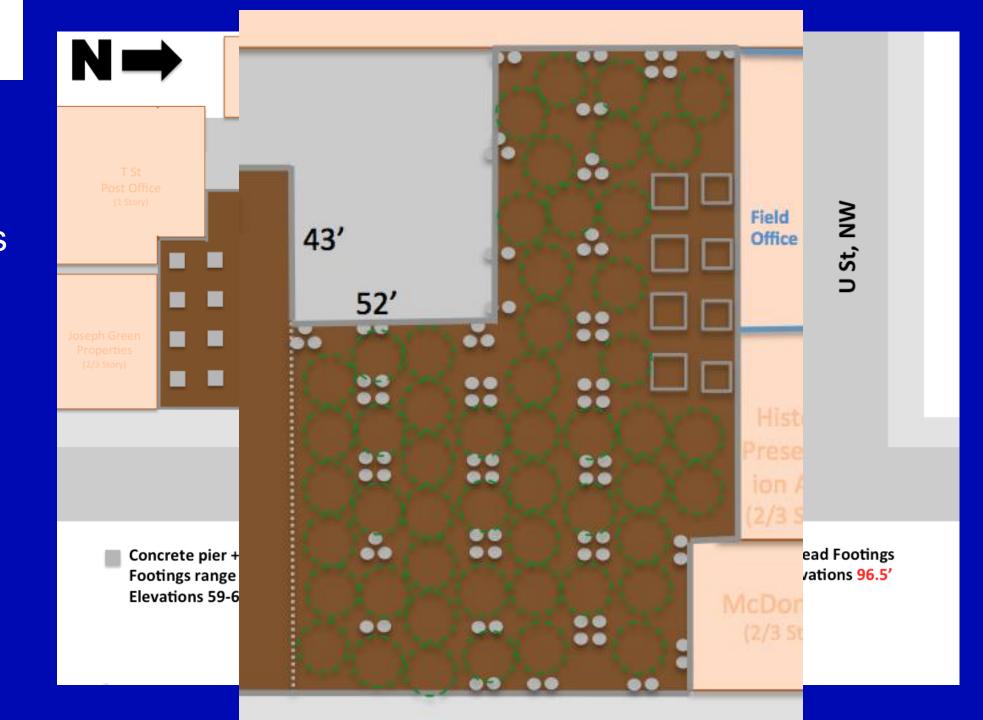
- water-to-air


- serves 13,020 SF 93 nominal tons heating/cooling • (14) water source heat pumps • (2) 5 SF direct outdoor air intake louvers
- (2) 5 SF relief/exhaust louvers
- (2) 712.5 MBH boilers
- (1) 155-ton cooling tower



Vertical Closed-Loop Geothermal Well System

- north footprint well field: 17,000 SF
- well spacing: 15' d
- 46 wells @ 300' deep, 1 well @ 150'
- $1 \frac{1}{4}$ " U-tube pipe
- 10% antifreeze
- 436 gpm (includes head loss)
- (1) 244 MBH boiler
- (1) 63-ton cooling tower



Louís at the 14th

Constructability Issues

- spacing & depth adjustments
- micropile coordination
- soil conductivity interference
- tenant negotiation
- ongoing research: foundation-encased wells

Louís at the 14th

R.S. Means Assembly: **\$105,555** (excludes GSHPs) \$23-\$45/SF: \$299,460 - \$585,900 \$1,500-\$3,000/ton capacity: **\$139,500 - \$279,000**

Cooling Tower & Boiler Downsize: \$52,376 savings

Energy Costs (annual): \$10,416 - \$14,322 Maintenance Costs (annual): **\$1,302**

Cost Impact

Schedule Impact

Total Cost (O&P excluded)

- 1.5 wells / drill rig / day • 47 wells with 2 drill rigs = 35 workdays
- actual micropiles = 4 months with 1 drill rig
- equipment mobilization advantage

Total Duration

LOUÍS at the 14th

(F

Site Specific Safety Plan Permanent Sheet Piling, Dewatering System, Workflow

Conclusion

Depth #1

(Prevention through Design research)

Depth #2 Foundation Redesign

Recommended for Quality Not Recommended for Budget

Depth #3

Depth #4

Geothermal Loop System
Not Recommended

Louís at the 14th

Acknowledgements

Balfour Beatty Construction

Alex Ward Will Siegel

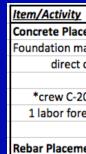
Penn State AE Faculty

Dr. Ed Gannon Dr. Craig Dubler Dr. Walt Schneider

My Family, Friends, & **AE Classmates**

Image by JBG Companies

Floors Concrete No Sub Sequence CONCP305 Pour Footings & Strap Beams - East 8 08-Aug-12 17-Aug-12 CONCP320 Pour Footings & Strap Beams - North 10 10-Aug-12 23-Aug-12 CONCP310 Pour Footings & Strap Beams - South 7 15-Aug-12 23-Aug-12 5 20-Aug-12 24-Aug-12 CONCP315 Pour Footings & Strap Beams - West 5 20-Aug-12 24-Aug-12 CONCP325 Form/Reinf/Place Foundation Walls/Col P3 to F CONCP350 Form/Reinf/Place Elevator/ Sump Pits 5 20-Aug-12 24-Aug-12


Actual Work

Milestone

Remaining Work

Critical Remaining Work

I Circuit	- Baseline revised	4.48				
1 Street	- baseline revised	4-10				
y ID		Activity Name	Original Duration	Remaining Duration	Start	Finish
	CONCP355	Form/Reinf/Place Elevator Shaft	3	3	24-Aug-12	28-Aug-12
	CONCP330	Form/Reinf/Place Foundation Walls/Col P3 to I	5	5	24-Aug-12	30-Aug-12
	CONCP340	Form/Reinf/Place Foundation Walls/Col P3 to i	5	5	24-Aug-12	30-Aug-12
	CONCP335	Form/Reinf/Place Foundation Walls/Col P3 to i	5	5	27-Aug-12	31-Aug-12
	CONCP345	Install Underdrain/Prep & Pour SOG A-D.5	5	5	04-Sep-12	10-Sep-12
	CONCP360	Form/Reinf/Place Stairwell to P2	2	2	11-Sep-12	12-Sep-12
	CONCP365	Install Underdrain/Prep & Pour SOG D.5-J	5	5	11-Sep-12	17-Sep-12
	CONCP300	Form/Reinf/Place Elevated Slab A-D.5	5	5	11-Sep-12	17-Sep-12
	CONCP370	Form/Reinf/Place Elevated Slab D.5-J	5	5	18-Sep-12	24-Sep-12
	CONCP220	Form/Reinf/Place Foundation Walls/Col P2 to I	4	4	18-Sep-12	21-Sep-12
	CONCP260	Form/Reinf/Place Stairwell to P1	5	5	18-Sep-12	24-Sep-12
	CONCP210	Form/Reinf/Place Foundation Walls/Col P2 to I	4	4	24-Sep-12	27-Sep-12
	CONCP230	Form/Reinf/Place Foundation Walls/Col P2 to F	4	4	24-Sep-12	27-Sep-12

<u>03 30 53.40</u> Item/Activity Foundation n

Reinforcing #9 rebar

Mat Slab Appendix

Item/Activity	Quantity	Unit	Crew	Daily Output	Labor Hours	Total Hours	Total Days		
Concrete Placement:									
Foundation mats, over 20CY,									
direct chute, pumped	5317	CY	C-20	110	0.582	3094	48		
						2 crews:	24		
*crew C-20 includes:									
1 labor foreman, 5 laborers, 1 cement finisher, 1 equip operator, 2 gas engine vibrators, 1 concrete pump									
Rebar Placement:									
Slab on grade, #3 to #7	300.4	Ton	4 Rodm	2.3	13.913	4179	131		
(#9 not available)						20 Rodm:	26		
				Mat Sla	Mat Slab Total Work Days:				

40 Concrete In Place		Cost Each						
t <u>y</u>	<u>Unit</u>	<u>Material</u>	Install	Equipment	<u>Total</u>			
mat (3000psi), over 20 CY	CY	178	87	0.58	265.58			
	5317			Cost:	\$1,412,185			
ng Steel	ton		general ru	le of thumb:				
	300.4		\$25	00/ton				
				Cost:	\$751,026			
		TOTAL COST:			\$2,163,211			

	Sheet Piling System Costs (per SF)										
Perimeter	Depth	SF									
900	22	19800									
			Material	Labor	Equipment	Total	Total + O&P				
20' deep exca	avation, 27 ps	f, left in place	\$21.50	\$3.07	\$3.98	\$28.55	\$32.50				
		Cost:	\$425,700	\$60,786	\$78,804	\$565,290	\$643,500				

Piling

Slab Area = 44,175 ft Perimeter = 900 LF

 $\varphi = 0.9$ for flexure $\varphi = 0.75$ for shear

Maximum soil contact pressure = 2,000 psf

Total load at top of footing for all columns = 56,000 kips (20,770 kips northern footprint 35,230 kips southern footprint)

 $\frac{\text{total gravity load}}{\text{building area}} \leq \text{soil bearing capacity}$

 $\frac{56,000 \ kips}{44,175 \ SF} \times 1,000 \ \frac{lbs}{kip} = 1,268 \ psf \le 2,000 \ psf \checkmark$

Largest Columns Loads: southern footprint = 1,100 kips, 18x24, column #46

northern footprint = 810 kips, 16x24, column #107

Calculate Q:

P = 1,100 kips P_D = 500 kips P_L = 600 kips P_u = 1.2 P_D + 1.6 P_L = 1560 kips Q = $\frac{P_u}{A} = \frac{1.560}{270} = 5.77 \, ksf$ → 5.77 ksf x 1,000 lbs/kip x (1'/12")² = 40.12 psi

Calculate V_c:

 $V_c = \phi 4 \sqrt{f_c'}$

 $V_c = 0.75(4)\sqrt{4,000} = 190 \ psi$

(4,000 psi concrete to be used)

Mat Slab Appendix

To calculate the size of the mat slab, column #46 is used to evaluate punching shear with a tributary area of 20' x 13.5' that represent the largest column and the largest bay of the structure.

Calculate d:

 $d^{2}(V_{c} + \frac{q}{4}) + d(V_{c} + \frac{q}{2})w = \frac{q}{4}(BL - W^{2})$

 $V_c = 190 \text{ psi}$ q = 40.12 psi W = 24" B = 162" or 13.5' L = 246" or 20' 6"

$$d^{2}(190 + \frac{40.12}{4}) + d(190 + \frac{40.12}{2})w = \frac{40.12}{4}(162 \times 246 - 24^{2})$$

d = 33.5"

Calculate h:

 $h = d + 3 + d_{b/2}$

$$h = 36.875 \rightarrow 40$$
"

d with clearance adjustment: d = 40 - 3 - 0.375 = 36.625"

Calculate ℓ:

 $\ell = \frac{L-column \ width}{2} = \frac{20.5-2}{2} = 9.25$

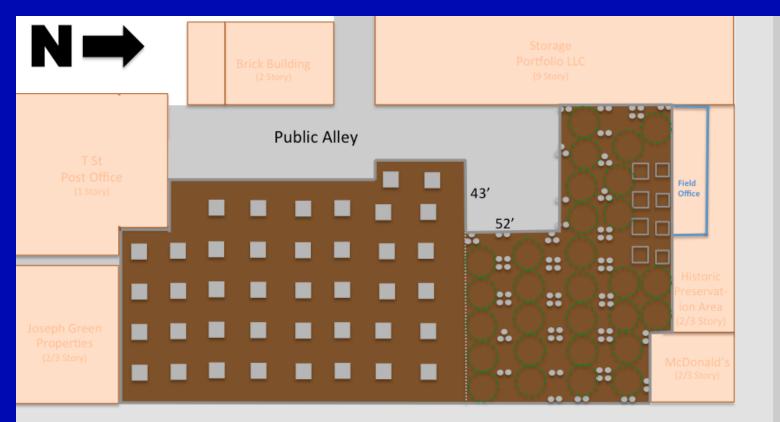
Calculate ϕM_n using #6 bars @ 12" spacing:

$$\varphi M_n = \varphi A_s(60 \ ksi)(d - \frac{a}{2})$$
$$\varphi M_n = 0.75A_s(60 \ ksi)\left(d - \frac{1.96A_s}{2}\right)$$
$$\varphi M_n = 98.8 \ \text{ft} \cdot k$$

Calculate M_u (maximum moment):

$$\begin{split} \mathbf{M}_{\mathrm{u}} &= \frac{q \times \ell/2}{2} = \frac{5.77 \times 9.25/2}{2} = 246.9 \; \mathrm{ft} \cdot k \\ \\ \frac{M_{\mathrm{u}}}{4d} &= \frac{246.9}{4(36.625)} = 1.679 \; in^2 \quad \rightarrow use \; \#9 \; rebar \; size \end{split}$$

 $\phi M_n \rightarrow 310.86 \text{ ft} \cdot k > 247 \text{ ft} \cdot k \checkmark$


$$a = 1.96(2) = 3.92"$$

$$C = \frac{3.92}{0.85} = 4.611"$$

$$\varepsilon = \frac{0.003}{4.611}(36.5 - 4.611) = 0.0207 \frac{in}{in} > 0.005$$

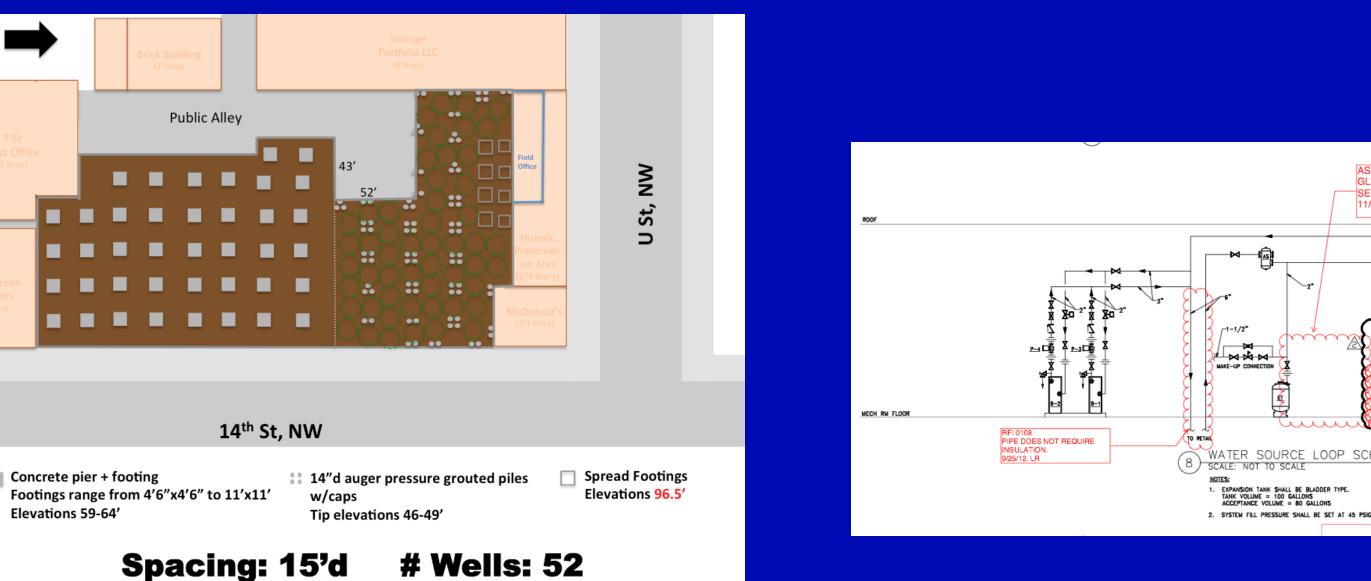
Final Result: 36" thick mat slab; 4,000 psi concrete w/ #9 rebar @ 6" o.c.

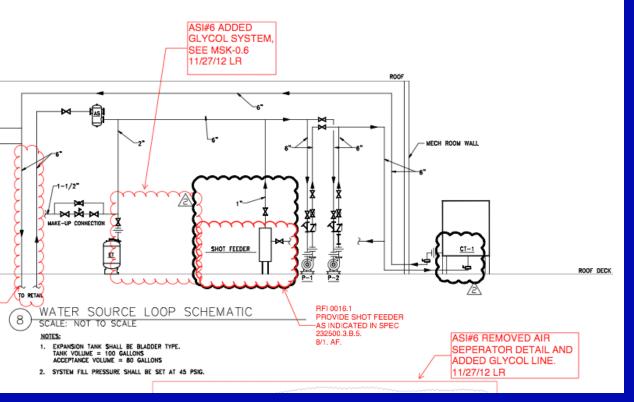
for
$$\phi = 0.9$$

14th St, NW

₹ St,

Spread Footings


Elevations 96.5'


Concrete pier + footing Footings range from 4'6"x4'6" to 11'x11' Elevations 59-64'

14"d auger pressure grouted piles w/caps Tip elevations 46-49'

Spacing: 20'd **# Wells: 29** N → Concrete pier + footing Elevations 59-64'

Geothermal Loop Appendix

	WATER SOURCE HEAT PUMP SCHEDULE (PROVIDED BY TENANT)																		
					HYDRO	NIC COOLING	;		HYI	DRONIC HEAT	TING		DACIC	OF DESIGN	EL	ECTRICA	L DATA		
TAG	CFM	NOMINAL TONS	ESP	FLOW RATE	MAX WPD	EAT	SENSIBLE	TOTAL	FLOW RATE	MAX WPD	EWT	TOTAL	BASIS	OF DESIGN	MCA	MOCP	VOLTAGE	NOTES	
			IN WG	GPM	FEET	(DB/WB)	мвн	MBH	GPM	FEET	EWI	MBH	MANUFACTURER MODEL OR SERIES		AMPS	AMPS	VULTAGE		
WSHP-1-3	2,000	5.0	0.4	16	-	80/67	47.7	58.4	18	-	70	66.3	маммотн	WHSP 062	-	-	480/3/60	1-6	
WSHP-4-14	2,800	7.0	0.4	22	-	80/67	69.0	83.8	22	-	70	96.1	маммотн	WHSP 084	-	-	480/3/60	1-6	
2. R-410 REFI 3. COORDINATE 4. PROVIDE UN 5. WSHP'S SUI																			

Table 3 RECOMMENDED LEVELS OF ANTIFREEZE SOLUTIONS FOR GCHP SYSTEMS

Recommended % Volume of Propylene Solutions

Coil Type	Pitch	% by Volume	% by Volume	% by Volume						
	Ft. pipe/Ft.trench	60 to 63°F Ground	52 to 59°F Ground	44 to 51°F Ground						
Slinky	10	10	15	20						
6-Pipe or Eqv. Slinky	6	10	15	20						
2-Pipe	2	10	15	20						
Vertical (3/4" Pipe)	2	0	10	20						
Vertical (1 ¼" Pipe)	2	0	10	20						
Warning more antifre	Warning more antifreeze will be required if loops are shorter than those recommended in									
	- ,	Tables 1 and 2								

Tables 1 and 2.

Table 1. Recommended Lengths of Trench or Bore Per Ton For GCHPsMultiply length of trench by pitch to find required length of pipe.See Tables 4 and 5 for Thermal Conductivity of Soils and Rocks.

	Pitch		Gi	round T	Temper	ature -	٥F	
Coil Type	Ft. of Pipe per Ft.	44 to	48 to	52 to	56 to	60 to	64 to	68 to
(See Figure 1 for Details)	Trench (or Bore)	47° F	51° F	55° F	59° F	63°F	67°F	70°F
Horz. 10-Pitch Slinky	10	125	120	115	120	125	150	180
Horz. 6-Pipe/6-Pitch Slinky	6	180	160	150	160	180	200	230
Horz. 4-Pipe/4-Pitch Slinky	4	190	180	170	180	190	220	260
Horz. 2-Pipe	2	300	280	250	280	300	340	400
Vertical U-tube (3/4" Pipe)	2	180	170	155	170	180	200	230
Vertical U-tube (1" Pipe)	2	170	160	150	160	170	190	215
Vertical U-tube (1 ¹ / ₄ " Pipe)	2	160	150	145	150	160	175	200
Table 1 based on k-0.6 Ptu/	hr ft ⁰ E for horizon	tal loon	a and k	1 2 D tu	br ft ⁰ E	for vorti	col loon	a and an

Table 1 based on k=0.6 Btu/hr-ft- $^{\circ}$ F for horizontal loops and k=1.2 Btu/hr-ft- $^{\circ}$ F for vertical loops and an annular fill/grout conductivity of 0.85 in vertical loops. For other conditions:

Item/Activity	Quantity	<u>Unit</u>	<u>Material</u>	<u>Install</u>	<u>Total</u>
Original Design:					
162 ton Forced-Draft Ty	pe Cooling To	wer			
	1	TonAC	172	9.95	181.95
					\$29,476
1,460 MBH Gas/Oil Fired	d Boiler				
	2	Ea	28400	6300	34700
					\$69,400
Proposed Design:					
300 MBH Gas/Oil Fired	Boiler				
	1	Ea	10400	2675	13075
					\$13,075
91 ton Stainless Steel In	duced Draft Co	ooling Tower			
	1	Ea	32100	1325	33425
					\$33,425
Total Savings:	\$52,376				

Geothermal Loop Appendix

	N	1echanical	Assembl	lies Estima	te	
Code	Element	Quantity	<u>Unit</u>	Material	Install	Total
1480	Unit Heater	5032 MBH 67	SF	4.35	3.52	7.87
		267000		\$1,161,450	\$939,840	\$2,101,290
1080	Boiler 1088 M	ивн	Ea	14900	6500	21400
		2		\$29,800	\$13,000	\$42,800
1300	Closed Loop	Water Cooled	SF	3.45	3.1	6.55
		267000		\$921,150	\$827,700	\$1,748,850
1440	Split System	with Air Coole	SF	2.91	3.49	6.4
		267000		\$776,970	\$931,830	\$1,708,800
				TOTAL HVAC	COST:	\$5,601,740
Other:						
1320	Cooling Tow	er Systems	SF	7.33	8.1	15.43
		267000		\$1,957,110	\$2,162,700	\$4,119,810
1280	Rooftop Unit	s	SF	10.7	4.93	15.63
		267000		\$2,856,900	\$1,316,310	\$4,173,210
				Act	ual Cost: \$4,:	365,000

Geothermal Heat Pump Sys	tem 50 To	on, Vert	ical Loops	, 200 LF Pe	r Ton
System D3050 248 1000				Cost Each	
Item/Activity	Quantity	Unit	Material	Install	Total
Mobilization Excavator	2	Ea		544	544
Mobilization crew and equipment	2	Ea		377	377
Mobilization drill rig	2	Ea		169	169
Drill wells 6" diameter	100	CLF		68300	68300
Pipe loops 1 1/2" diameter	200	CLF	28000	38800	66800
Pipe headers 2" diameter	1600	LF	3696	3840	7536
U-fittings for pipe loops	50	Ea	225.5	857.5	1083
Header tee fittings	100	Ea	1410	2900	4310
Header elbow fittings	10	Ea	63.5	182.5	246
Excavate trench for pipe header	475	BCY		3534	3534
Backfill trench for pipe header	655	LCY		1873.3	1873.3
Compact trench for pipe header	475	ECY		1168.5	1168.5
Circulation pump 5 HP	1	Ea	9825	835	10660
Pump control system	1	Ea	1350	635	1985
Pump guages	2	Ea	79	44	123
Pump gauge fittings	2	Ea	151	44	195
Pipe insulations for pump connection	12	LF	33.84	81	114.84
Pipe for pump connection	12	LF	203.4	364.92	568.32
Pipe fittings for pump connection	1	Ea	32	187.7	219.7
Install thermostat wells	2	Ea	15.6	114.28	129.88
Install guage wells	2	Ea	15.6	119.42	135.02
Thermometers, stem type	8	Ea	308	750.72	1058.72
Gauges, pressure or vacuum	1	Ea	860	278	1138
Pipe strainer for pump	1	Ea	165	283	448
shut valve for pump	1	Ea	630	305	935
Expansions joints for pump	2	Ea	660	224	884
Heat pump 50 tons	1	Ea	40000	13200	53200
		Total:	\$87,723	\$140,012	\$227,735
Adjusted			\$19,723	\$86,922	\$105,555
300 LF/ton; excludes heat pumps & mo	bilization				

#	Activity ID	Activity Name										
5	🗆 🖷 Voigt Thesi	s.Contract Awar										
6	😑 A1000	Contract Awarded										
7	🗉 📇 Voigt Thesi	s.NTP (New WE										
8	😑 A1020	Notice to Proceed										
9	🗉 📇 Voigt Thesi	s.Procurement										
10	😑 A1030	Procurement										
11	🗉 📇 Voigt Thesi	s.Fab & Deliver										
12	🔲 A1040	Fab & Deliver HVAC										
13	😑 A1050	Fab & Deliver Electric										
14	😑 A1060	Fab & Deliver Concret										
15	😑 A1090	Fab & Deliver Metals										
16	😑 A1080	Fab & Deliver Roof Sy										
17	😑 A1070	Fab & Deliver Millwork										
18	😑 A1100	Fab & Deliver Window										
19	😑 A1110	Fab & Deliver Doors &										
20	😑 A1120	Fab & Deliver Woodw										
21	🗉 📹 Voigt Thesi	s.Mob & Demo										
22	😑 A1130	Mobilization										
23	😑 A1160	Install Historic Facade										
24	😑 A1140	Demo Phase 1: Domin										
25	😑 A1150	Demo Phase 2										
26	🖃 📇 Voigt Thesi	s.Foundation (I										
27	😑 A1170	Drill Piles										
28	😑 A1220	Install 7 Dewatering W										
29	😑 A1230	Dewatering Drawdow										
30	😑 A1180	P1 Install Laggin & Tie										
31	😑 A1240	Drill/Set/Pour AGPs										
32	😑 A1190	P2 Install Lagging & T										
33	😑 A1200	Excavate to Footing F										
34	😑 A1250	Foundations Complete										
35	😑 A1210	Backfill P1 Wall										
36	🗉 🖷 Voigt Thesi											
37	🖃 🖶 Voigt Thesis	s.CIP Concrete.Floo										
38	😑 A1440	Form/Reinf/Place Ele										
39	😑 A1450	Form/Reinf/Place Col										
40	😑 A1460	Form/Reinf/Place Ele										
41	😑 A1470	Install Channel										
40	- Voigt Theory	CID Conorata Flaa										

Schedule

Filter: All Ac	ctivities																	
	Original Duration	Start	Finish	*							20)12						
		V			Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan
ed (New WBS)	1	21-Dec-11	21-Dec-11		▼ 2	1-Dec-1	1, Voigt	Thesis.	Contract	Awarde	d (New	WBS)-1						
	1	21-Dec-11	21-Dec-11		10	Contract	Awardeo	9	1				1	1	1	1	1	
S)-2	1	13-Mar-12	13-Mar-12					V 13	Mar-12,	Voigt Th	iesis.NT	P (New	WBS)-2					
	1	13-Mar-12	13-Mar-12					I No	tice to F	roceed								
New WBS)-3	30	13-Mar-12	23-Apr-12						-	23-Apr-1	2, Voigt	Thesis.F	rocuren	nent (Ne	w WBS)-3		
	30	13-Mar-12	23-Apr-12							Procurer	nent	1	1	1	1	1	1	
(New WBS)-4	185	08-May-12	29-Jan-13						T	-								
	80	08-May-12	29-Aug-12											Fab &	Deliver I	IVAC		
	40	08-May-12	03-Jul-12	-								🛛 Fab 8	Deliver	Electric				
	20	08-May-12	05Jun-12	-					1		🛛 Fab	& Deliver	Concre	te		1	1	
	40	08-May-12	03-Jul-12	-					1			📕 Fab 8	Deliver	Metals		1	1	
em	40	22-May-12	18-Jul-12	-					+			F	ab & De	liver Roo	of Syster	ń		
	60	20-Jun-12	13-Sep-12						1					📛 Fa	ab & Deli	ver Millw	vork	
	124	05-Jul-12	28-Dec-12															∎ab &
rames	83	16-Aug-12	12-Dec-12														💻 Fa	b <mark>k</mark> Deli
ĸ	85	28-Sep-12	29-Jan-13											į – I				
New WBS)-5	113	13-Mar-12	20-Aug-12						1	1		1	1	20-Aug-1	2, Voigt	Thesis.N	vļob & De	≑m <mark>o (N</mark>
	10	13-Mar-12	26-Mar-12						Mobiliz	ation		1	1			1	1	
rotection	5	27-Mar-12	02-Apr-12						🕽 Insta	Historic	Facade	Protecti	on					
's El Paraiso, Mason's		03-Apr-12	05-Jun-12								Dem	o Phase				Mason's	Lodge	
		24-Jul-12	20-Aug-12											Demo Pł	nase 2			
ew WBS)-6	150	06-Apr-12	06-Nov-12									1	1		1	₩ 06-N	∮ov-12, \	/ogt Th
	38	06-Apr-12	30-May-12								Drill Pi	les	1					
lls	10	30-Apr-12	11-May-12							🔲 Inst	all 7 De	watering	Wells					
	10	14-May-12	25-May-12								Dewate	ring Dra	wdown					
acks	29	22-May-12	02-Jul-12] P1 In:	stall Lag	gin & Tie				
		31-May-12	25-Sep-12						1	l		i		i		t/Pour A	∖GPs	
backs		03-Jul-12	26-Jul-12											all Laggi				
& Install Lagging		27-Jul-12	06-Aug-12	-					1				Ехса	i		i	tall Lagg	in <mark>e</mark>
		26-Sep-12	26-Sep-12	-					1							ations Co		
		31-Oct-12	06-Nov-12									 		 	 	Вас	kfill P1 V	(a. ⊧∙
New WBS)-7		08-Aug-12	17-Sep-13													1	1	
2 (New WBS)-1	39	06-Nov-12	02-Jan-13						1								1	🕇 02-J
ator Shaft & Stairwell	5	06-Nov-12	12-Nov-12						1			1	1		1	1	m/Rein	
nns	10	06-Nov-12	19-Nov-12														Form/Re	
ated Slab		08-Nov-12	05-Dec-12														🗖 Form	VR einf/
	12	14-Dec-12	02-Jan-13															🗎 Insta